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LEXTER TO THE EDITOR 

q-oscillators realization of F,(4) and G,(3) 

A Sciarrinot 
Dipanimento di Scienze Fisiche, Universilh di Napoli 'Federico 11' and INFN - Saione  
di Napoli. Mama d'ollremare, Pad. 19, 1-80125 Napoli, Italy 

Received 30 October 1991 

AbstmcL A realization of the quantum superalgebras corresponding lo F(4) and G(3)  
is given in terms of q-deformed bosonic and fermionic oscillatarr. 

- ine quantum groups ii, 2j are actuaiiy a topic of intensive research both in mathe- 
matical physics and mathematics. Roughly speaking the q-deformed universal algebra 
U , (G)  of a semi-simple Lie algebra G is defined by a set of q depending relations 
between the generators of G in the Serre presentation endowed with a Hopf algebra 
structure, using as input the Cartan matrix of G (see for instance [3] for a more 
precise definition). It is a natural idea to apply these ideas to the Lie superalgebra 

Now it is well known that an explicit construction of U,(A,) could be obtained 
by introducing q-analogue of the harmonic oscillator boson operator 17, 81 satisfy- 
ing a q-deformed Weyl algebra. Introducing also the q-analogue of the fermionic 
operators satisfying a q-deformed Clifford algebra [S, 31 this construction has been 
generalized to the q-universal enveloping algebra of all classical Lie algebras [3], to 
the exceptional Lie algebras 19, 101. (Really in [lo] the construction of U,(G,) has 
been obtained in terms of q-quasiparafermions (called 'q-skedofermions'); however, 
we give below a realization of U,(G,) in terms of q-fermions). 

A similar construction for the classical SUS has been given in [ll]. The aim 
of this letter is to present a similar realization of F,(4) and G , ( 3 ) .  A realization 
of F(4) and G(3) in terms of bosonic-fermionic operators has been given in [12], 
where, in order to express the generators of the even part of the SLAS as bilinears 

and one fermion, use has been made of the embedding G, c B, c D,. As a 
consequence a generator of B, (respectively C,) is expressed as linear combination 
of the generators of D,. Since a peculiar feature of the deformation is the lack of 
linearity in the defining relations, this realization is not suitable to obtain a realization 
of the corresponding q-superalgebras, at least in a straightforward way. 

$La.! [4j using as input the. &fining cartan matrix of S L 4  p j  (for 2 revie... see [q). 

of fermiONC uperaiors and of pari Bs biiinedm in one 'Doson 

so we fo!!ow a s!lght!y merent approach. 
Let us recall the definition of G, associated with a simple G SLA of rank T [5, 111. 
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The quantum superalgebra G, of the universal enveloping of G is generated by 
3r elements E;, Fi and Hi which satisfy (i, j = 1 = 1 , .  . . , r )  

where [ , ) is the supercommutator, (a i j )  is the Cartan-Kac matrix of G, qi = q d 9 ,  
di being non-zero integers with greatest common divisor equal to one such that 
d im- .  = d . a . . , a n d  

> J  J 1 :  

The quantum superalgebra is endowed with a Hopf algebra structure. The action of 
the coproduct A, antipode S and co-unit E on the generators is as follows: 

A ( H ; )  = H i  8 1 t 1 @J H i  
&(Ei) = E; 8 q,?' + q;"' @J E; 
A(Fi) = Fi 8 q? + qr"' 8 F; 

._ 
(3) 

S ( H i )  = - H i  

€(Hi)  = €(Ei) = E ( 4 )  = € ( E )  = 0 
S ( E i )  = -qPisEi S ( F i )  = -q4"Fi 

E ( 1 )  = I .  

Further the generators obey the Serre relations which are most simply expressed in 
terms of the following rescaled generators 

defining the q-analogue ad, of the adjoint operation by 

ad, = ( p L  8 PR)(id 8 S ) A  (5 )  

where i d  is the identity operator and pL, pR are the left and right (graded) multi- 
plications: 

Y". degr  deg y 
cLL(")Y = "Y cLR(")Y = ( - 1 )  

The Serre relations read ( i  # j) 

( adqki)l-i;j E.  J = (ad , I  F.)l-'vp. I = 0 (6) 

where ( i L i j )  is the matrix obtained from ( a i j )  by replacing the entry equal to +1 by 
-1. 

Is par:icu!a; qda~as (6)  be *&!ri:[efi [3] (deg ,p. = 
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where 

and [ll] (deg E, = 1) 

( a . .  * J  = 0) [ E ; ,  E; )  = 0 ( 9 4  

(a.. 21 = 1 )  (E;)2Ej-q;4E,(E,)Z=0. (9b) 

Analogous equations hold, replacing E; by F, and qi by 4;'. 
Let us recall a few preliminary properties of q-oscillators just to establish the 

general framework from which the relations, that we shall use in the following, arise. 
Exploiting the triality of D, we can introduce [13] three sets of eight fermionic 

oscillators which can be identified with the three fundamental representations of D,, 
the adjoint representation being realized as bilinears of two fermions belonging to any 
of the three sets. Then the action of the adjoint on the fundamental representations 
requires that the three sets are not independent and, for consistency, have to satisfy 
a set of relations given in [ 131. 

We recall also that a spinorial representation of D, still transforms under B, c D, 
as the spinorial representation, the highest weight (HW) and lowest weight (Lw) still 
remaining HW (LW) in the decomposition. Moreover the spinorial representation of 
B, decomposes under G, c B, as the fundamental and the singlet representations 
of G,, the HW (Lw) of the spinorial still remaining the HW (Lw) of the fundamental 
representation. 

In the following we introduce only the set of relations we need explicitly in our 
realization. 

Consider six fermionic oscillators ( a t ,  a,) ( i  = 1, 2, 3), which can be consid- 
ered as a subset of the fermionic operators spanning the vectorial representation of a 
D,, and two fermionic oscillators (++, $) which are assumed to transform, respec- 
tively, as the HW and Lw of the spinorial representations of the same D,. Then these 
fermions are not independent and they satisfy the following relations ( i  = 1, 2 ,  3): 

hi  = a t  a .  
, I  

[ h i ,  @ + I  = $$' [ h i ,  +I = -$$ (104 
[ a t ,  $+I  = [ a ; ,  $1 = 0 
[[a? ,  $1, aj1 = [ [ a ; ,  @ + I ,  $1 = 0 

(lob) 
(W ( i  it j ) .  

As clearly @'$ commutes with all hi, it can be expressed (up to an  additional 
c-number) as a linear combination of h;: 

3 

$'$ = c i h i .  
i = l  

Equation (11) allows one to compute the action of the bilinear $+@ on the a ! ,  a; 
operators, once the coefficients ci have been computed. We shall do this later. 

After this very short summing up, we introduce the q-oscillators we need to realize 
Fq(4)  and G , ( 3 ) .  We make the quantum deformation of the fermionic operators 
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above defined, which for convenience we denote with the same notation, hoping 
that no confusion arises: ( a t ,  a;, N,), ($+, $, Q). These q-oscillators satisfy the 
standard relations of a q-Clifford algebra, i.e. ( i ,  j = 1, 2, 3) 

The same relations hold replacing a t  by $+ (a; by $) and Ni by Q. These 
sets are not mutually independent and we assume the vanishing relations (lob) and 
(lOc) which hold for the non-deformed fermionic oscillators are presexved in the 
deformation and that the relations (loa) and (11) involving bilinears of the form 
a t . ; .  $+$ still hold in the deformation replacing the hilineas respectively by Ni 
and Q. 

We introduce a q-bosonic oscillator (b+, b,  M) satisfying a q-Weyl algebra: 

bbf - q2b+b = q-2M 

[ M ,  b+] = b+ [ M ,  b] = -b. 

The q-boson is assumed to commute with the q-fermions. Equations (12) and (13) 
hold replacing q by q - l .  

From the construction of a q-boson in terms of standard (non-deformed) bosons 
1141, we remark that the following properties hold: denoting by 6 ! ( 6 )  a q-boson 
satisfying the q-Weyl algebra for the value q of the deforming parameter ( i ,  j = 
1 , 2 ,  . . .): 

[ M ; .  b:(q)] = +6,,6f V Y  ( 1 4 4  

[ b f ( ~ ) ,  bf(q')l = [bi(q), bj(q')l = 0 Vq,q' ( 1 4 )  

[bf(q),  bj(4/)1 = 0 i it j V q , q ' .  ( 1 4 4  

Now we make the conjecmre that analogous relation hold for the q-fermions 
af (q ) ,  a i (q)  replacing in equations (146) and (14c) the commutator by the anti- 
commutator and in equation (14a) Mi by Ni. We remark that this conjecture is 
satisfied by the standard fermions; indeed, due to the fact that the square of a num- 
ber fermionic operator (i.e. h i )  is equal to the number operator itself, equations (12) 
are satisfied also by standard fermions [ll]. 

We shall now provide an explicit expression of the generators of F,(4)  as h e a r s  
and bilinears in q-deformed fermionic operators and q-hosonic operator. The Cartan 
matrix of F(4) ,  in the so-called distinguished basis, is given by (see [4]) 

2 - 1  0 0 
-1  2 - 1  0 
0 -2 2 -1  
0 0 1 0  

so thevaluesofd ,  are: d i = ( 2 , 2 ,  1 , -1 ) .  
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The generators (of deg = 0) corresponding to U.,(B,) are given [3 ]  

We have ( k =  1 , 2 )  

Therefore 

?b write the only generator of deg = 1 as bilinear in one q-fermion and one q-boson 
we define the operator &t = $+($I4), &* = b * ( q 3 / * ) ,  which satisfy, respectively: 

&$t + q 3 ~ 2 & t &  = q 3 ~ / 2  ('9a) 
(19b) b&+ - $ / 2 & t b  = q-3M/2 

Then we write ( q  # -1)  

Using the identity: 

( 4 - 3 / 2 - q 3 / 2 ) =  ( q + 4 - 1  + 1 ) ( q - ' / 2 - q l / 2 )  (21) 

we compute 

It is immediate to compute that 

Using the identity: 

[ A B ,  C ]  = A [ B ,  C ]  + [ A ,  CIB 
[ [ A .  B ] ,  C] = [ A ,  [B. C ] ]  + [ [ A ,  Cl ,  Bl 

one easily finds, using equations (lob) and (loC) and a f a j  = ; [a? ,  a j ]  that ( k  = 
1 , 2 ) :  
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Then from equation (ll), using the above specified prescription to get the analogous 
equation in the deformed case, we rewrite equations (23)-(26): 

3 

Q = C C i ~ i  

3 

C [ c i N ; ,  ata,] = 0 = c1 - c2 
i = l  

3 

C [ C i N i ,  a:.,] = 0 = c2 - c3 
i = l  

which implies 

c, = 2 / 3  ( i  = 1 ,  2 ,  3 ) .  (28) 

Equation (22) can be written 

[E4. F41 = [NI + N 2  + N3 + $MIq- , ,  

so 

H ,  = Nl + N 2 +  N,+ $ M  
I .~ .. = :(ml + 41i2 + 3 ~ ~ j  + $ M  

which is just the usual expression [4] for the corresponding Cartan in F(4) 
It is easy to compute 

(30) 

[Ei, F;] = 0 ( i  = 1 ,  2 ,  3 ,  4 ,  i # j )  (31) 

and that the action of Hi on E: ( i ,  j = 1 ,  2, 3, 4) gives the Cartan-Kac matrix 
(15). 

Now we have to verify the Serre relations. 
For 1 < i , j  6 3 these relations are equivalent to the Serre relations for U,(B3j, 

so we refer to [3], even if their verification is rather immediate. So we limit ourselves 
to the following entries of the modified Cartan-Kac matrix a,,, &4i  ( i  < 4). For 
i = 1 ,  2 the verification follows from identity equation (24) and equations (lob) and 
(lof), while for i = 3 each monomial in equation (96) vanishes due to vanishing of 
the square of a q-fermion. 

The Cartan matrix of G ( 3 ) ,  in the distinguished basis, is given by (see [4]) 

01 I 2 -1 

The values of di  are: d, = (3, 1, -1). 

(32) 
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The generators (deg = 0 )  E ,  ( F , )  ( k  = 1 ,  2) give a realization of U,(G,). 
In (lo] a realization of this quantum algebra has been given in terms of q- 
quasiparafermions. Here we present a different, simpler realization in terms Of 
q-fermions. 

Let us introduce q-fermions A: = a: ($ ) ,  A ,  = a k ( $ )  ( k  = 1, 2)  which 
satisfy equation (1Za) replacing q by d. 

Then we can realize the generators of G q ( 3 )  as follows: 

and from our definition of A:, A, (12 = 1.2) and our conjecture we get 

[E, ,  F1l = [ N ,  - N2Iq6 
HI = N ,  - N 2 .  

A straightfonvard and tedious calculation gives 

[4,  J51 = [2N2 + N3 - Nilqz 
H ,  = 2 N ,  + N3 - N I .  

(34) 

(35) 

The only generator of deg = 1 can be written (q2  # -1) 

E ,  = m $ b '  F3 = -++b. (36) 

[E3 ,  F31 = ( 4  + q - l ) [ Q  + MIq-2 = [2( Q + M ) ] , - L .  

[Q  + M, E31 = [ Q  + M ,  F31 = 0. 

We have 

(37) 

It is immediate to compute that: 

(38) 

Now in analogous way with the case of Fq(4) we find: 

3 3 3 

Q = C c i N i  C[ciNi,$]=-$=-xC'$ 2 
;=I  i = 1  ;=I  

3 C[CiNi, E,] = 0 = c ,  - c2 

(39) 
i = 1  

3 

C k i N i ,  E21 
i = l  
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Requiring that E, is an eigenvector of Q implies 

So we find: 

We can rewrite equation (37) in the form 

(40) 

(41) 

c2 = c3 - c,. 

c,  = c2 = 

[E3, F31 = [NI + N, + 2N3 + 2MIq- ,  

c3 = 1. 

(42) H3 = N, + N ,  + 2N3 + 2 M  = 3H, + 2 H ,  + 2 M .  
Again we find the usual expression (41 of the Cartan matrix element in G(3). 
It is quite easy to check that 

[ E , ,  F,] = 0 (i, j = 1 , 2 , 3 ,  i # j) (43) 
and that the action of H ,  ( i , j  = 1 ,  2 ,  3) gives the Cartan-Kac matrix (32). 

i n e  verlncarion of the Serre reiations is a easy task as each monomiai in equations 
(7)-(96) for i i i ,  # 0 is vanishing and for iij = 0 we have already shown that they 
are satisfied in Fq(4)  and the structure of the relevant generator E, in both the 
q-superalgebras is (up to a re-scaling in q, irrelevant in this context) the same. 

An essential point in our realization of F,(4) and Gq(3)  has been the conjecture 
that the q-number fermionic operator does not depend on q. This conjecture is, 

while its use in the construction of F q ( 4 )  has allowed to find the usual form of H4.  
However, it is well known that Cartan matrix are defined up to the multiplication for 
an arbitrary (non-degenerate) matrix. So the rescaling in q of the q-generators is the 
analogue of the multiplication by a c-factor of the generators in the case of SLAS. 

It would be interesting to have an explicit construction of q-fermions to be able 
to verify this conjecture. 

Finally let us remark that the construction of the exceptional q-superalgebra is 
simpler than the construction of the non-deformed corresponding ones which would 
require the introduction of more fcrmions and marc rclations bcsidc cquation (10) 
in order to be able to compute the supercommutator of the generators. 

really; an essential point in the realkatinn of the even part of G q ( 3 ) ,  !ha! & IJ ( C . )  q \ - z , r  
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